Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Blood Cancer Discov ; 4(3): 172-175, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2306644

ABSTRACT

SUMMARY: In patients with multiple myeloma, completion of mRNA-based vaccination schemes failed to yield detectable SARS-CoV-2 Omicron-neutralizing antibodies and S1-RBD-specific CD8+ T cells in approximately 60% and 80% of the cases, respectively. Patients who develop breakthrough infections exhibited very low levels of live-virus neutralizing antibodies and the absence of follicular T helper cells. See related article by Azeem et al., p. 106 (9). See related article by Chang et al., p. 1684 (10).


Subject(s)
COVID-19 , Hematologic Neoplasms , Multiple Myeloma , Humans , SARS-CoV-2/genetics , Breakthrough Infections , mRNA Vaccines , COVID-19/prevention & control , Antibodies, Neutralizing , CD8-Positive T-Lymphocytes
2.
Metabolites ; 13(3)2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2252800

ABSTRACT

A number of studies have assessed the impact of SARS-CoV-2 infection and COVID-19 severity on the metabolome of exhaled air, saliva, plasma, and urine to identify diagnostic and prognostic biomarkers. In spite of the richness of the literature, there is no consensus about the utility of metabolomic analyses for the management of COVID-19, calling for a critical assessment of the literature. We identified mass spectrometric metabolomic studies on specimens from SARS-CoV2-infected patients and subjected them to a cross-study comparison. We compared the clinical design, technical aspects, and statistical analyses of published studies with the purpose to identify the most relevant biomarkers. Several among the metabolites that are under- or overrepresented in the plasma from patients with COVID-19 may directly contribute to excessive inflammatory reactions and deficient immune control of SARS-CoV2, hence unraveling important mechanistic connections between whole-body metabolism and the course of the disease. Altogether, it appears that mass spectrometric approaches have a high potential for biomarker discovery, especially if they are subjected to methodological standardization.

3.
Sci Transl Med ; 14(627): eabj1996, 2022 Jan 12.
Article in English | MEDLINE | ID: covidwho-1483986

ABSTRACT

Safe and effective vaccines against coronavirus disease 2019 (COVID-19) are essential for ending the ongoing pandemic. Although impressive progress has been made with several COVID-19 vaccines already approved, it is clear that those developed so far cannot meet the global vaccine demand alone. We describe a COVID-19 vaccine based on a replication-defective gorilla adenovirus expressing the stabilized prefusion severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein named GRAd-COV2. We assessed the safety and immunogenicity of a single-dose regimen of this vaccine in healthy younger and older adults to select the appropriate dose for each age group. For this purpose, a phase 1, dose-escalation, open-labeled trial was conducted including 90 healthy participants (45 aged 18 to 55 years old and 45 aged 65 to 85 years old) who received a single intramuscular administration of GRAd-COV2 at three escalating doses. Local and systemic adverse reactions were mostly mild or moderate and of short duration, and no serious adverse events were reported. Four weeks after vaccination, seroconversion to spike protein and receptor binding domain was achieved in 43 of 44 young volunteers and in 45 of 45 older participants. Consistently, neutralizing antibodies were detected in 42 of 44 younger-age and 45 of 45 older-age volunteers. In addition, GRAd-COV2 induced a robust and T helper 1 cell (TH1)­skewed T cell response against the spike protein in 89 of 90 participants from both age groups. Overall, the safety and immunogenicity data from the phase 1 trial support the further development of this vaccine.


Subject(s)
Adenovirus Vaccines , COVID-19 , Adenoviridae , Aged , Animals , COVID-19 Vaccines , Gorilla gorilla , Humans , SARS-CoV-2
4.
Aging (Albany NY) ; 13(17): 20860-20885, 2021 09 13.
Article in English | MEDLINE | ID: covidwho-1405570

ABSTRACT

Cancer patients are particularly susceptible to the development of severe Covid-19, prompting us to investigate the serum metabolome of 204 cancer patients enrolled in the ONCOVID trial. We previously described that the immunosuppressive tryptophan/kynurenine metabolite anthranilic acid correlates with poor prognosis in non-cancer patients. In cancer patients, we observed an elevation of anthranilic acid at baseline (without Covid-19 diagnosis) and no further increase with mild or severe Covid-19. We found that, in cancer patients, Covid-19 severity was associated with the depletion of two bacterial metabolites, indole-3-proprionate and 3-phenylproprionate, that both positively correlated with the levels of several inflammatory cytokines. Most importantly, we observed that the levels of acetylated polyamines (in particular N1-acetylspermidine, N1,N8-diacetylspermidine and N1,N12-diacetylspermine), alone or in aggregate, were elevated in severe Covid-19 cancer patients requiring hospitalization as compared to uninfected cancer patients or cancer patients with mild Covid-19. N1-acetylspermidine and N1,N8-diacetylspermidine were also increased in patients exhibiting prolonged viral shedding (>40 days). An abundant literature indicates that such acetylated polyamines increase in the serum from patients with cancer, cardiovascular disease or neurodegeneration, associated with poor prognosis. Our present work supports the contention that acetylated polyamines are associated with severe Covid-19, both in the general population and in patients with malignant disease. Severe Covid-19 is characterized by a specific metabolomic signature suggestive of the overactivation of spermine/spermidine N1-acetyl transferase-1 (SAT1), which catalyzes the first step of polyamine catabolism.


Subject(s)
COVID-19/blood , COVID-19/pathology , Neoplasms/blood , Neoplasms/virology , Polyamines/blood , Acetylation , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/microbiology , COVID-19/virology , Cohort Studies , Cytokines/blood , Female , Humans , Inflammation Mediators/blood , Male , Metabolome , Middle Aged , Propionates/blood , Severity of Illness Index , Young Adult , ortho-Aminobenzoates/blood
5.
Cell Death Dis ; 12(3): 258, 2021 03 11.
Article in English | MEDLINE | ID: covidwho-1132059

ABSTRACT

The circulating metabolome provides a snapshot of the physiological state of the organism responding to pathogenic challenges. Here we report alterations in the plasma metabolome reflecting the clinical presentation of COVID-19 patients with mild (ambulatory) diseases, moderate disease (radiologically confirmed pneumonitis, hospitalization and oxygen therapy), and critical disease (in intensive care). This analysis revealed major disease- and stage-associated shifts in the metabolome, meaning that at least 77 metabolites including amino acids, lipids, polyamines and sugars, as well as their derivatives, were altered in critical COVID-19 patient's plasma as compared to mild COVID-19 patients. Among a uniformly moderate cohort of patients who received tocilizumab, only 10 metabolites were different among individuals with a favorable evolution as compared to those who required transfer into the intensive care unit. The elevation of one single metabolite, anthranilic acid, had a poor prognostic value, correlating with the maintenance of high interleukin-10 and -18 levels. Given that products of the kynurenine pathway including anthranilic acid have immunosuppressive properties, we speculate on the therapeutic utility to inhibit the rate-limiting enzymes of this pathway including indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase.


Subject(s)
COVID-19/blood , Metabolome , SARS-CoV-2/metabolism , Antibodies, Monoclonal, Humanized/administration & dosage , Biomarkers/blood , COVID-19/diagnosis , Female , Humans , Male , Metabolomics , Prognosis , COVID-19 Drug Treatment
6.
Oncoimmunology ; 9(1): 1789284, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-1066080

ABSTRACT

Amid controversial reports that COVID-19 can be treated with a combination of the antimalarial drug hydroxychloroquine (HCQ) and the antibiotic azithromycin (AZI), a clinical trial (ONCOCOVID, NCT04341207) was launched at Gustave Roussy Cancer Campus to investigate the utility of this combination therapy in cancer patients. In this preclinical study, we investigated whether the combination of HCQ+AZI would be compatible with the therapeutic induction of anticancer immune responses. For this, we used doses of HCQ and AZI that affect whole-body physiology (as indicated by a partial blockade in cardiac and hepatic autophagic flux for HCQ and a reduction in body weight for AZI), showing that their combined administration did not interfere with tumor growth control induced by the immunogenic cell death inducer oxaliplatin. Moreover, the HCQ+AZI combination did not affect the capacity of a curative regimen (cisplatin + crizotinib + PD-1 blockade) to eradicate established orthotopic lung cancers in mice. In conclusion, it appears that HCQ+AZI does not interfere with the therapeutic induction of therapeutic anticancer immune responses.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Azithromycin/administration & dosage , COVID-19 Drug Treatment , Hydroxychloroquine/administration & dosage , Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Azithromycin/pharmacokinetics , COVID-19/immunology , COVID-19/virology , Cell Line, Tumor , Cisplatin/administration & dosage , Cisplatin/pharmacokinetics , Clinical Trials, Phase II as Topic , Crizotinib/administration & dosage , Crizotinib/pharmacokinetics , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Interactions , Drug Therapy, Combination/methods , Female , France , Humans , Hydroxychloroquine/pharmacokinetics , Mice , Neoplasms/immunology , Oxaliplatin/administration & dosage , Oxaliplatin/pharmacokinetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
7.
Oncoimmunology ; 9(1): 1794424, 2020 07 16.
Article in English | MEDLINE | ID: covidwho-1010161

ABSTRACT

The COVID-19 pandemic has afflicted most countries on the planet. As a result, immunity against SARS-CoV-2, induced via natural infections or imminent vaccinations, is expected to develop in a large fraction of the global population. Here, we propose to exploit SARS-CoV-2-specific CD8+ T cells for cancer immunotherapy strategies.


Subject(s)
CD8-Positive T-Lymphocytes/transplantation , COVID-19/immunology , Immunotherapy/methods , Neoplasms/therapy , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/blood , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Host Microbial Interactions/immunology , Humans , Immunologic Memory , Neoplasms/immunology , Pandemics
8.
Oncoimmunology ; 9(1): 1857112, 2020 12 08.
Article in English | MEDLINE | ID: covidwho-990263

ABSTRACT

Formyl peptide receptor 1 (FPR1) is a pattern-recognition receptor that detects bacterial as well as endogenous danger-associated molecular patterns to trigger innate immune responses by myeloid cells. A single nucleotide polymorphism, rs867228 (allelic frequency 19-20%), in the gene coding for FPR1 accelerates the manifestation of multiple carcinomas, likely due to reduced anticancer immunosurveillance secondary to a defect in antigen presentation by dendritic cells. Another polymorphism in FPR1, rs5030880 (allelic frequency 12-13%), has been involved in the resistance to plague, correlating with the fact that FPR1 is the receptor for Yersinia pestis. Driven by the reported preclinical effects of FPR1 on lung inflammation and fibrosis, we investigated whether rs867228 or rs5030880 would affect the severity of coronavirus disease-19 (COVID-19). Data obtained on patients from two different hospitals in Paris refute the hypothesis that rs867228 or rs5030880 would affect the severity of COVID-19.


Subject(s)
COVID-19/genetics , COVID-19/virology , Neoplasms/genetics , Plague/genetics , Receptors, Formyl Peptide/genetics , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/pathology , Female , Humans , Immunity, Innate , Male , Middle Aged , Neoplasms/epidemiology , Neoplasms/pathology , Neoplasms/virology , Pandemics , Paris/epidemiology , Plague/microbiology , Plague/pathology , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics
9.
Nat Cancer ; 1(10): 946-964, 2020 10.
Article in English | MEDLINE | ID: covidwho-834917

ABSTRACT

Coronavirus disease 2019 (COVID-19) and its causative virus, SARS-CoV-2, pose considerable challenges for the management of oncology patients. COVID-19 presents as a particularly severe respiratory and systemic infection in aging and immunosuppressed individuals, including patients with cancer. Moreover, severe COVID-19 is linked to an inflammatory burst and lymphopenia, which may aggravate cancer prognosis. Here we discuss why those with cancer are at higher risk of severe COVID-19, describe immune responses that confer protective or adverse reactions to this disease and indicate which antineoplastic therapies may either increase COVID-19 vulnerability or have a dual therapeutic effect on cancer and COVID-19.


Subject(s)
COVID-19/immunology , Humans , SARS-CoV-2
10.
Oncoimmunology ; 9(1): 1807836, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-741761

ABSTRACT

Over the past 16 years, three coronaviruses (CoVs), severe acute respiratory syndrome CoV (SARS-CoV) in 2002, Middle East respiratory syndrome CoV (MERS-CoV) in 2012 and 2015, and SARS-CoV-2 in 2020, have been causing severe and fatal human epidemics. The unpredictability of coronavirus disease-19 (COVID-19) poses a major burden on health care and economic systems across the world. This is caused by the paucity of in-depth knowledge of the risk factors for severe COVID-19, insufficient diagnostic tools for the detection of SARS-CoV-2, as well as the absence of specific and effective drug treatments. While protective humoral and cellular immune responses are usually mounted against these betacoronaviruses, immune responses to SARS-CoV2 sometimes derail towards inflammatory tissue damage, leading to rapid admissions to intensive care units. The lack of knowledge on mechanisms that tilt the balance between these two opposite outcomes poses major threats to many ongoing clinical trials dealing with immunostimulatory or immunoregulatory therapeutics. This review will discuss innate and cognate immune responses underlying protective or deleterious immune reactions against these pathogenic coronaviruses.


Subject(s)
COVID-19/immunology , Host Microbial Interactions/immunology , SARS-CoV-2/immunology , COVID-19/diagnosis , COVID-19/virology , Humans , Immunity, Cellular , Immunity, Humoral , Middle East Respiratory Syndrome Coronavirus/immunology , Protective Factors , Risk Factors , Severe acute respiratory syndrome-related coronavirus/immunology , Severity of Illness Index
11.
Cell Death Dis ; 11(8): 656, 2020 08 19.
Article in English | MEDLINE | ID: covidwho-725491

ABSTRACT

The current epidemic of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) calls for the development of inhibitors of viral replication. Here, we performed a bioinformatic analysis of published and purported SARS-CoV-2 antivirals including imatinib mesylate that we found to suppress SARS-CoV-2 replication on Vero E6 cells and that, according to the published literature on other coronaviruses is likely to act on-target, as a tyrosine kinase inhibitor. We identified a cluster of SARS-CoV-2 antivirals with characteristics of lysosomotropic agents, meaning that they are lipophilic weak bases capable of penetrating into cells. These agents include cepharentine, chloroquine, chlorpromazine, clemastine, cloperastine, emetine, hydroxychloroquine, haloperidol, ML240, PB28, ponatinib, siramesine, and zotatifin (eFT226) all of which are likely to inhibit SARS-CoV-2 replication by non-specific (off-target) effects, meaning that they probably do not act on their 'official' pharmacological targets, but rather interfere with viral replication through non-specific effects on acidophilic organelles including autophagosomes, endosomes, and lysosomes. Imatinib mesylate did not fall into this cluster. In conclusion, we propose a tentative classification of SARS-CoV-2 antivirals into specific (on-target) versus non-specific (off-target) agents based on their physicochemical characteristics.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/metabolism , Drug Evaluation, Preclinical/methods , Pneumonia, Viral/metabolism , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19 , Cell Death/drug effects , Chlorocebus aethiops , Coronavirus Infections/virology , Hydroxychloroquine/pharmacology , Imatinib Mesylate/pharmacology , Lysosomes/drug effects , Pandemics , Pneumonia, Viral/virology , Protein Kinase Inhibitors/pharmacology , RNA, Viral/drug effects , SARS-CoV-2 , Vero Cells , Viral Load/drug effects
13.
Microb Cell ; 7(5): 119-128, 2020 May 04.
Article in English | MEDLINE | ID: covidwho-242867

ABSTRACT

Autophagy is a catabolic pathway with multifaceted roles in cellular homeostasis. This process is also involved in the antiviral response at multiple levels, including the direct elimination of intruding viruses (virophagy), the presentation of viral antigens, the fitness of immune cells, and the inhibition of excessive inflammatory reactions. In line with its central role in immunity, viruses have evolved mechanisms to interfere with or to evade the autophagic process, and in some cases, even to harness autophagy or constituents of the autophagic machinery for their replication. Given the devastating consequences of the current COVID-19 pandemic, the question arises whether manipulating autophagy might be an expedient approach to fight the novel coronavirus SARS-CoV-2. In this piece, we provide a short overview of the evidence linking autophagy to coronaviruses and discuss whether such links may provide actionable targets for therapeutic interventions.

14.
Cell Stress ; 4(4): 66-75, 2020 Mar 02.
Article in English | MEDLINE | ID: covidwho-70183

ABSTRACT

Coronaviruses (CoVs) are a large family of enveloped, positive-strand RNA viruses. Four human CoVs (HCoVs), the non-severe acute respiratory syndrome (SARS)-like HCoVs (namely HCoV 229E, NL63, OC43, and HKU1), are globally endemic and account for a substantial fraction of upper respiratory tract infections. Non-SARS-like CoV can occasionally produce severe diseases in frail subjects but do not cause any major (fatal) epidemics. In contrast, SARS like CoVs (namely SARS-CoV and Middle-East respiratory syndrome coronavirus, MERS-CoV) can cause intense short-lived fatal outbreaks. The current epidemic caused by the highly contagious SARS-CoV-2 and its rapid spread globally is of major concern. There is scanty knowledge on the actual pandemic potential of this new SARS-like virus. It might be speculated that SARS-CoV-2 epidemic is grossly underdiagnosed and that the infection is silently spreading across the globe with two consequences: (i) clusters of severe infections among frail subjects could haphazardly occur linked to unrecognized index cases; (ii) the current epidemic could naturally fall into a low-level endemic phase when a significant number of subjects will have developed immunity. Understanding the role of paucisymptomatic subjects and stratifying patients according to the risk of developing severe clinical presentations is pivotal for implementing reasonable measures to contain the infection and to reduce its mortality. Whilst the future evolution of this epidemic remains unpredictable, classic public health strategies must follow rational patterns. The emergence of yet another global epidemic underscores the permanent challenges that infectious diseases pose and underscores the need for global cooperation and preparedness, even during inter-epidemic periods.

SELECTION OF CITATIONS
SEARCH DETAIL